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Abstract

In the dynamic analysis of a very large floating structure (VLFS), it is crucial that the stress resultants are accurately
determined for design purposes. This paper highlights some problems in obtaining accurate modal stress-resultant
distributions in freely vibrating rectangular plates (for modeling box-like VLFSs) using various conventional methods.
First, it is shown herein that if one adopts the classical thin plate theory and the Galerkin’s method with commonly used
modal functions consisting of the products of free—free beam modes, the natural boundary conditions cannot be sat-
isfied at the free edges and the shear forces are completely erroneous, even when the eigenvalues have already con-
verged. Second, it is shown that the problem still persists somewhat with the adoption of the more refined plate theory
of Mindlin and the use of both (a) NASTRAN (that employs the finite element method) and (b) the Ritz method. The
former method requires extremely fine mesh designs while the latter requires very high degrees of polynomial functions
to achieve some form of satisfaction of the natural boundary conditions. Third, it is demonstrated that a modified
version of the Ritz method, involving the use of a penalty functional for enforcement of the natural boundary con-
ditions, also did not solve the problem when the plate is relatively thin. In fact, the method produces artificial stiffening
to the plate. It is hoped that this paper will inspire researchers to develop an efficient technique for determining accurate
stress resultants in a freely vibrating plate, apart from taking the brute force approach in having an extremely fine finite
element mesh or using a very high polynomial degree. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a wave response analysis of a box-like very large floating structure (VLFS) as shown in Fig. 1, the
structure may be modeled as a thin rectangular plate and the modal superposition method for both rigid
body motions and bending modes of the plate vibrating freely in air may be used. Bending modes must be
included because VLFSs, for airplane runways, typically have a large dimension in one direction (up to a
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Fig. 1. Example of a VLFS (Courtesy of the Floating Structures Association of Japan).

few kilometers) and are therefore susceptible to bending deformations. Recently, dynamic response ana-
lyses on such VLFSs have been carried out by several researchers (Seto and Ochi, 1998; Nagata et al., 1998;
Utsunomiya et al., 1998; Kashiwagi, 1998). Most of these vibration analyses on free rectangular thin plates
used modal functions defined by the products of natural modes of free—free beams. However, when the
authors checked the bending moments and shear forces distributions, it was found that these modal
functions did not satisfy the natural boundary conditions at the free edges, i.e. the appropriate moments
and effective shear forces did not vanish at the free edges. In the case of the effective shear forces, not only
did we find nonvanishing shear forces at the edges but also entire shapes of the shear force distributions
were completely erroneous as will be shown herein. The inaccuracy of the shear force distributions is
primarily due to the shear forces of thin plate theory being calculated from the equations of motions.
Prompted by the need to obtain good accuracy and satisfaction of the stress resultants at the free edges
for dynamic analysis of VLFS, the authors turned to the more refined plate theory of Mindlin (1951). The
Mindlin plate theory provides a better estimation of the stress resultants because these quantities may be
evaluated from the constitutive relations that involve rotations and only the first derivatives of the dis-
placement and rotation functions. Moreover, the Mindlin plate theory takes into consideration the effects
of transverse shear deformation and rotary inertia which become significant in the higher modes of
vibration and also when the incident sea waves are oblique to the VLFSs as shown by Sim and Choi (1998).
In deriving the governing eigenvalue equation of the vibrating Mindlin plates, the Ritz method was used.
For convergence of results to the exact solutions, it is essential that the Ritz functions (a) are mathemati-
cally complete, (b) satisfy the geometric boundary conditions and (c) compose of an adequate large
number of independent functions. There is, however, no mandatory need for the Ritz functions to satisfy
the natural boundary conditions involving moments and shear forces. This is because when the Lagrangian
(or the total potential energy functional in a static problem) is minimized, the equations of motion (or the
equilibrium equations in the static problem) and the natural boundary conditions are supposed to be
approximately satisfied. In carrying out the Ritz vibration analysis of rectangular plates with all edges free,
we choose to use mathematically complete two-dimensional polynomials for approximating the transverse
displacement and the rotations of the plate cross-section because such Ritz functions may be algebraically
manipulated, differentiated and integrated in an exact manner for high accuracy (Xiang et al., 1995; Liew
et al., 1998). Using these Ritz functions, it was observed in the case of relatively thin plates that the bending
moments more or less vanished at the free edges. However, the twisting moments and the shear forces
surprisingly did not, even when calculated from the sum of rotations and first derivatives of transverse
displacement and using very high degrees of polynomials. One may think that if the degree of polynomial is
taken to an ultra large number, the natural boundary conditions should be satisfied. But the method be-
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comes painfully slow for solution, and suffers from ill conditioning at some point. In seeking out a better
method, the authors tried modifying the Ritz method by introducing penalty functionals to satisfy the
natural boundary conditions, a technique somewhat akin to the enforcement of elastic boundary con-
straints devised by Xiang et al. (1997). The modified Ritz method is shown herein to create artificial
stiffening of the plate, giving rise to erroneous stress-resultant distributions when the plate is relatively thin.

In order to check the Ritz results, the authors also used the finite element software package NASTRAN to
determine the stress resultants in the freely vibrating rectangular plates. A similar observation was ob-
tained. The stress resultants, especially the twisting moments and the shear forces, did not fully satisfy the
natural boundary conditions even when the mesh is quite fine due to the presence of steep gradients of these
stress resultant distributions near the free edge. This drawback of finite element in finite domain problems
has been pointed out by previous researchers for bending problems (for e.g. Kant and Hinton 1983).

The problem of determining accurate stress resultants in freely vibrating plates, highlighted herein, still
remains to be solved. It is hoped that this paper will inspire researchers to seek an innovatively efficient
method for solution, especially for arbitrarily shaped plates with free edges. The availability of such a
method will be extremely useful for the dynamic analysis of VLFSs, especially in the extraction of stress
resultants for design purposes.

2. Problem definition

Consider a flat, isotropic rectangular plate of length a, width b, thickness 4, Young’s modulus E,
Poisson’s ratio v, shear modulus G = E/[2(1 + v)] and mass density p (see Fig. 2). All four edges of the plate
are free. The problem is to find the vibration frequencies, mode shapes and the stress-resultant distributions
that satisfy the natural boundary conditions.The aforementioned problem will be tackled using different
methods which will be designated as methods A to E as shown in Table 1.

3. Method A

In method A, the classical thin plate theory is adopted. By assuming free harmonic vibration of the
considered rectangular plate, the Lagrangian I is given by

n=u-T (1)
where the maximum strain energy functional U is given by
1o e [rotw\® o otw\? . otw dPw 2w\
U= D||— — 2v— —+2(1 — dxd 2
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Fig. 2. Rectangular plate dimensions and coordinates system.
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Table 1
Descriptions of methods A, B, C, D and E

Method Brief descriptions of methods

A Based on the classical thin plate theory and using the Galerkin’s method with the product of (M x N) free—free beam
modes as the modal function (see Utsunomiya et al. 1998).

B Based on the Mindlin plate theory and using the Ritz method with mathematically complete two-dimensional
polynomial functions of degree p to approximate the transverse displacement and rotations.

C Based on the Mindlin plate theory and using the Ritz method with mathematically complete two-dimensional
polynomial functions of degree p to approximate the transverse displacement and rotations plus a penalty functional
for satisfaction of the natural boundary conditions at the free edges.

D Based on the classical thin plate theory and using the finite element software NASTRAN.

E Based on the Mindlin plate theory and using the finite element software NASTRAN.

and the maximum kinetic energy T is given by
1 b/2 a/2
T = = pha? / / w?dxdy (3)
2 —b/2 J—a/2

in which w is the transverse displacement, D = Eh*/[12(1 — v?)] is the flexural rigidity of the plate and o the
angular frequency of the vibrating plate.
Using the Hamilton’s principle, i.e.

SIT =0 (4)

one obtains

R R Ml R Ol
Pw 0w
Ox0y OxOy

/bﬂ /“/2 { D[azw ?dw  O*w 0*dw 0w 0w O*w 0w
- —a/2

b/2

(5)
+2(1—v)

] - pthWSW} dxdy =0
The displacement function is assumed to consist of the products of the natural modes of free—free beams:

wx,Y) =3 Lunfu(x)ga(y) (6)

m=1 n=1

where (,, is the amplitude of the mnth mode, and f,(x) and g,(y) are the modal functions of free—free
beams (see Utsunomiya et al., 1998 for details of these functions).

Substituting Eq. (6) into Eq. (5) and applying the Galerkin’s method, the following eigenvalue equation
can be obtained

M N

S G Kty = M) =0 (I=1,2,...,M; j=12,...,N) (7)

m=1 n=1

where K, ;; and M,,,;; are the generalized stiffness and mass matrices, respectively. This eigenvalue problem
may be solved using any standard eigenvalue solver.
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4. Methods B and C

In method B, the Mindlin plate theory is adopted. By assuming free harmonic vibration of the con-
sidered rectangular plate, the Lagrangian IT is given by Eq. (1) where the maximum strain energy functional
U is given by

1 [ 0 oy oY, 1/dy, O
YRl R R BT
2 ) e Joap 6x ¥ ox Oy oy  Ox
o\’ ow\?
(wﬁa) +(¢y+a—y) dedy (8)
and the maximum kinetic energy 7' is given by
1 5 b/2 a2 s h2 5 5
=3 pho /_b/2 /_a/2 {w +55 (% +lpy) drdy )
in which w is the transverse displacement, and ,, y, are the rotations of the plate cross-section.

In method C, we use a penalty functional to facilitate the satisfaction of the natural boundary conditions
at the free edges. The augmented Lagrangian IT is given by

+ > Gh

O=U—-T+P (10)
where the penalty functional P is defined as
1 b2 2 a2 2
p-t AA./ (lp L ) dy+/1_g/ (w L ) dx
2 -b/2 Ox x=+a/2 —a/2 ay y=+b/2
2 2
b/2 R a/2 0
+A,,/ (a‘p W) dy+/1,,/ < ¢Y+ aw) dx
—b/2 Ox ay x=+a/2 —a/2 ay Ox y=+£b/2
b2 o 2 a2 /a 2
+A,/ (a‘”u %) dy+A,/ <&+a¢") dx (11)
—b/2 Oy Ox x=+a/2 —a/2 Ox 9y y=b/2

where Ay, A, A, are penalty multipliers which are set to some large numbers. If we set A = 0in Eq. (11), we
recover method B. Note that the first two terms on the right-hand side of Eq. (11) make the shear forces
vanish at the edges, the next two terms for forcing the bending moments to vanish at the edges and the last
two terms for the twisting moments to vanish at the edges.

For both methods B and C, we propose that the displacement functions be approximated by mathe-
matically complete two-dimensional polynomials of degree p (Liew et al., 1998), i.e.

q
"> ety = T, (12a)
q=0 i=0
P g
Vo) =D duxt ™y =g, (12b)
q=0 i=0
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where m = (¢ + 1)(¢ + 2)/2 — i and ¢,,, d,,, e, are the Ritz coeflicients.
Applying the Ritz method,

or or om
=0 =0 =0

aci ’ ad, ’ ae,- ’

where the number of polynomial terms N = (p 4 1)(p + 2)/2. By substituting Egs. (12a)-(12c) into Eq. (10)
and then into Eq. (13), one obtains the eigenvalue equation given by

K. K. K. M. M, M. P. P, P. Cc
Ku K| - o’ My Mg | + Pu Pa d;=0 (14)
S

i=1,2,...,N (13)

sym. K.. Sym. M., ym. P..

where Ks are the submatrices of the stiffness matrix, Ms the submatrices of the mass matrix and Ps the
submatrices of the penalty matrix for the enforcement of stress resultants to vanish at the free edges.
The submatrices K are given by

b 3¢, 0, @¢ 3¢y,
ch — 2 Gh w w w w ) dxd 15
’ /—b/z /—a/2 ( Ox 6x dy Oy ) Y (132)

vl [ )wo
o

b/2
K. =« Gh/ / < 15¢
—b/2 J—a/2 ay ( )
K _D/b/2/ 6(,1) 6(;3 (1 —v) 64) 6(;5 (15)
“ —b/2 6x ax 2 ay ay
2 a2 [ dp, 0¢; (1 —v) dg, 0,
=D vt * ) dxd 15¢
/b/2 /a/2 ( ox Oy 2 dy Ox Y (15e)
G ¢, 0¢, L1 T 12Gh ,
K.=D - by | dxd 15
/—b/z /—a/Z ( oy 6)/ 2 Ox Ox + D ¢«‘¢y Y (15f)
The submatrices M are given by
b2 paj2 .
Mcc = ,0]’1/ / (d)wd)w) dxdy (163)
—b/2 J—a)2
ph3 b/2
My = —= ¢ ¢r)dxdy (16b)
/2 J-a)2
h3 b2 paj2
—b/2 J—a)2

M, =M, =M, =0 (16d)
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The submatrices P are given by

2 1 3d b7 o2 (3, Op)
Pcc:As/ (ad)w §W> dy+Av/ (%%) dx
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5. Methods D and E
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(17a)

(17b)

(17¢)

(17d)

(17e)

(17f)

For methods D and E, we employ the finite element software package NASTRAN. In method D, the thin
shell element QUADS (quadrilateral eight-noded element) is used where the effect of transverse shear de-
formation has been neglected. In method E, the thick shell element QUADS with allowance for transverse

shear deformation is used.
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6. Vibration results

As a typical example, we consider a rectangular plate of Poisson’s ratio v = 0.3, aspect ratio a/b = 4, and
two different thickness-to-width ratios /b = 0.01 and /b = 0.1 so as to examine the influence of the plate
thickness on the effectiveness of the methods used and the vibration solutions. In using the Mindlin plate
theory, we have adopted a shear correction factor x> = 5/6.

All five methods give rigid body motions for the first three modes. So we shall compare the vibration
results for the 4th mode to the 7th mode. Tables 2-6 present partially the convergence studies of the natural
frequency parameters Q = wb*+/ph/D and the maximum values of the nondimensionalized modal stress
resultants M, = M,.b/D, M, = M,,b/D, M,, = M,b/D, O, = O,b*/D, O, = Q,b*/D as computed from the
five methods. These modal stress resultants have been normalized by seiting Wimax /b = 1.

When using the classical thin plate theory, the frequency parameters 2 and the stress resultant pa-
rameters are independent of the thickness-to-width ratio //b. These parameters are, however, dependent on
h/b ratio when the Mindlin plate theory is used. Thus, the classical thin plate theory cannot capture the
effect of the plate thickness on the natural frequency parameters and stress resultants parameters.

From the results in Tables 2-6, monotonic convergence of the natural frequencies was obtained for all
five methods, except for the case of #/b = 0.01 and p = 10 of method C where we observed a missing mode
of vibration. Thus, if an adequate number of terms or degrees of freedom is taken, one can be sure that the
frequencies obtained are accurate. When we compare the mode shapes obtained by the five methods, they
are very similar. As an example, Fig. 3a and b shows the normalized 4th mode and 5th mode, respectively.
This means that method A employing the classical thin plate theory and free—free beam modal functions
will suffice if the natural frequencies and the mode shapes are required in the modal superposition method
for the wave response analysis of VLFSs when the plate is relatively thin.

Next, we compare the bending moment distributions as computed by methods A and B (with /b = 0.01
and 0.1). Fig. 4a and b shows the normalized bending moments M, of the 4th mode and 5th mode, re-
spectively. It can be seen that the bending moments do somewhat vanish along the edges x = +a/2 when
either method A or method B is used. In the case of M,,, method A does not provide correct moment

Table 2
Convergence of frequency parameters 2 and maximum values of stress resultants using method A

h/b M, N Ttems 4th mode 5th mode 6th mode 7th mode

0.01 and 0.1 M=N=20 Q 1.341 3.260 3.720 6.761
M, 1.12 0.491 2.99 2.10
M, 0.337 0.239 0.897 0.887
M, 0.0659 1.06 0.391 1.97
0. 0.888 2.38 5.63 8.04
0, 9.37 3.60 243 15.2

0.01 and 0.1 M =N =30 Q 1.340 3.260 3.717 6.759
M, 1.12 0.477 2.99 2.15
M, 0.338 0.238 0.898 0.886
M, 0.0668 1.06 0.403 1.98
0. 0.883 2.84 5.71 10.0
Q, 14.5 5.38 37.9 243

0.01 and 0.1 M =N =40 Q 1.340 3.260 3.715 6.759
M, 1.12 0.480 2.99 2.13
M,, 0.337 0.238 0.897 0.884
M, 0.0676 1.06 0.406 1.98
0. 0.879 2.90 5.65 10.5
Q, 18.8 7.59 49.5 33.8
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Table 3
Convergence of frequency parameters 2 and maximum values of stress resultants using method B
h/b Degree of Items 4th mode 5th mode 6th mode 7th mode
polynomials, p

0.01 p=10 Q 1.338 3.256 3.711 6.751
M, 1.02 0.434 2.72 1.93
M, 0.0566 0.215 0.283 0.806
M, 0.0680 1.062 0.405 1.98
0. 5.76 98.5 35.2 179
0, 0.132 7.84 0.728 34.1

0.01 p=15 Q 1.338 3.253 3.711 6.746
M, 1.02 0.430 2.72 1.93
M, 0.0569 0.213 0.282 0.795
M, 0.0642 1.07 0.383 1.97
0. 13.5 219 65.6 326
0, 0.164 18.6 0.759 61.8

0.01 p=20 Q 1.338 3.251 3.711 6.737
M, 1.02 0.427 2.71 1.91
M, 0.0567 0.213 0.282 0.793
M, 0.0662 1.08 0.397 1.96
0. 18.2 282 112 513
0, 0.310 28.2 1.37 616

0.1 p=10 Q 1.334 3.138 3.682 6.493
M, 1.02 0.382 2.67 1.71
M, 0.0517 0.155 0.265 0.566
M, 0.0514 1.06 0.302 1.94
0. 2.82 334 17.0 63.3
0, 0.105 6.53 0.547 27.1

0.1 p=15 Q 1.334 3.137 3.682 6.488
M, 1.02 0.380 2.67 1.71
M, 0.0531 0.145 0.265 0.532
M, 0.0524 1.06 0.314 1.93
0. 2.90 33.7 17.7 63.7
0, 0.112 9.77 0.572 353

0.1 p=20 Q 1.334 3.137 3.682 6.487
M, 1.02 0.379 2.67 1.71
M, 0.0529 0.143 0.265 0.523
M, 0.0524 1.06 0.313 1.93
0. 2.90 33.8 17.8 63.7
0, 0.109 10.2 0.551 38.0

distributions while method B gives the correct moment distribution as shown in Fig. 5a and b for the 4th
mode and 5th mode, respectively and also in Tables 2 and 3.

For twisting moments, method A gives satisfactory twisting moment distributions as shown in Fig. 6a
and b. Note that it is acceptable that the twisting moments do not vanish in the classical thin plate theory.
For the shear forces, method A gives completely erroneous distributions as shown in Figs. 7a,b, 8a and b.
Method B gives reasonably good twisting moment distribution and shear force distribution when the plate
is relatively thick (h/b = 0.1) but displays some difficulties in satisfying the statical requirement of zero
twisting moment and shear forces at the free edges when the plate is thin (4/b = 0.01) as shown in Figs. 6-8.
The reason is due to steep gradient of the stress-resultant distributions near the plate edge. It may be
possible to have vanishing twisting moments and shear forces at the edges for thin plates if a very large
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Table 4
Convergence of frequency parameters 2 and maximum values of stress resultants using method C
h/b Degree of Items 4th mode Sth mode 6th mode 7th mode
polynomials, p

0.01 p=10 Q 1.349 3.784 4.943 7.635
M, 1.02 2.70 0.875 5.67
M, 0.139 0.641 1.23 2.26
M, 0.0129 0.130 1.26 0.166
0. 57.3 383 2003 394
0, 1.10 53.5 69.5 100

0.01 p=15 Q 1.339 3.349 3.725 7.284
M, 1.02 0.585 2.70 243
M, 0.0666 0.200 0.348 1.04
M, 0.0635 1.18 0.317 2.31
0, 58.1 844 376 2142
0, 1.87 113 4.67 387

0.01 p=20 Q 1.338 3.275 3.712 6.840
M, 1.02 0.485 2.71 2.06
M, 0.0609 0.181 0.292 0.694
M, 0.0692 1.16 0.413 223
0, 394 562 230 1089
0, 1.76 201 8.74 843

0.1 p=10 Q 1.335 3.160 3.684 6.614
M, 1.02 0.482 2.67 1.91
M, 0.0558 0.181 0.282 0.681
M, 0.0502 1.13 0.283 2.21
0, 343 39.7 20.6 82.8
Q, 0.145 12.9 0.964 49.7

0.1 p=15 Q 1.334 3.138 3.682 6.499
M, 1.02 0.374 2.67 1.70
M, 0.0544 0.154 0.264 0.575
M, 0.0525 1.06 0.315 1.97
0, 291 33.7 17.9 65.9
Q. 0.119 12.8 0.576 50.4

0.1 p=20 Q 1.334 3.137 3.682 6.487
M, 1.02 0.383 2.67 1.72
M,, 0.0531 0.143 0.265 0.524
M, 0.0524 1.06 0.313 1.93
0, 2.90 33.7 17.8 63.9
0, 0.119 10.8 0.603 39.6

degree of polynomials is taken for method B, but this poses some numerical difficulties and introduce more
oscillations in the stress-resultant distributions.

In an attempt to improve on the satisfaction of the natural boundary conditions, method C that features
a penalty functional was used. Based on trial tests, it was found that the best magnitudes of penalty
multipliers to adopt are A, = 10* x D, A, = A, = 10 x D for h/b = 0.1 and A, = 10° x D, A, = A, = 10 x
D for h/b = 0.01. Method C does force the stress resultants to satisfy the natural boundary conditions as
shown in Fig. 9a and b. However for thin plates (#/b = 0.01), the penalty functional creates some dis-
tortions to the twisting moment and shear force distributions which is clearly observed from the results in
Table 4. It still remains for researchers to improve on the method to eliminate such undesirable distortions.
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Table 5
Convergence of frequency parameters 2 and maximum values of stress resultants using method D
h/b Degrees of Items 4th mode Sth mode 6th mode 7th mode
freedoms

0.01 and 0.1 1849 Q 1.338 3.257 3.711 6.751
M, 1.02 0.433 2.73 1.95
M, 0.0573 0.219 0.285 0.813
M, 0.0624 1.07 0.375 1.98
0. 2.29 25.7 14.0 48.8
0, 0.140 7.66 0.720 28.8

0.01 and 0.1 7153 Q 1.338 3.258 3.711 6.753
M, 1.02 0.433 2.73 1.94
M, 0.0574 0.218 0.285 0.808
M, 0.0658 1.07 0.395 1.98
0. 3.95 50.9 24.1 95.7
0, 0.156 14.5 0.808 54.6

0.01 and 0.1 28129 Q 1.338 3.259 3.711 6.755
M, 1.02 0.432 2.73 1.94
M, 0.0573 0.219 0.285 0.813
M, 0.0676 1.06 0.407 1.98
0. 7.28 102 44.2 189
0, 0.349 28.1 1.36 106

In order to check the correctness of the Ritz results, method D and method E involving the finite element
software package NASTRAN, with thin and thick shell elements, were used to obtain the vibration results.
As in method A, method D does not give satisfactory convergence of the shear forces as shown by the
results presented in Table 5, even when the uniform mesh design is extremely fine (up to 28,129 degrees of
freedom). Thus, it may be concluded that the classical thin plate theory cannot provide good shear force
distributions. Method E (with thick shell elements) gives results similar to those obtained by method B. It is
rather surprising that one needs 84,387 degrees of freedom using a uniform mesh design in order to obtain
the same accuracy as the Ritz method with a total of only 693 Ritz coefficients (i.e. three times the number
of terms in a degree of polynomial of p = 20). One may consider that the proposed Ritz method is com-
putationally more efficient than NASTRAN in solving this particular class of plate problems. But, both these
conventional methods failed to model zones with steep gradients as pointed out by Kant and Hinton
(1983).

It is worth noting that the foregoing stress-resultant results show that the convergence of natural fre-
quencies does not translate into the convergence of the stress resultants and the satisfaction of the natural
boundary conditions. Instead, a better convergence criterion would be one based on the maximum values of
the stress resultants so as to ensure good stress-resultant distributions and satisfaction of natural boundary
conditions.

7. Conclusions
The following conclusions may be made from this study:

1. The use of the classical thin plate theory will not suffice if accurate distributions of modal stress re-
sultants, especially twisting moments and shear forces, are required in the design of VLFSs modeled as
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Table 6
Convergence of frequency parameters 2 and maximum values of stress resultants using method E
h/b Degrees of freedoms 4th mode 5th mode 6th mode 7th mode
0.01 5547 Q 1.338 3.249 3.710 6.735
M, 1.02 0.431 2.73 1.93
M, 0.0570 0.214 0.284 0.792
M, 0.0616 1.08 0.368 1.98
0, 2.27 25.3 13.9 48.4
0, 0.128 7.59 0.659 28.5
0.01 21459 Q 1.338 3.249 3.711 6.736
M, 1.02 0.429 2.72 1.92
M, 0.0569 0.213 0.283 0.792
M, 0.0666 1.12 0.399 2.04
0, 3.81 48.7 233 91.4
0, 0.142 14.0 0.724 524
0.01 84387 Q 1.338 3.249 3.711 6.736
M, 1.02 0.428 2.72 1.92
M, 0.0569 0.212 0.283 0.787
M, 0.0732 1.16 0.440 2.13
0, 6.47 88.9 39.3 166
0, 0.301 24.9 1.17 93.5
0.1 5547 Q 1.336 3.153 3.692 6.525
M, 1.02 0.378 2.68 1.71
M, 0.0529 0.152 0.265 0.560
M, 0.0592 1.07 0.353 1.95
0, 1.75 16.9 10.8 32.7
0, 0.0967 5.41 0.487 20.1
0.1 21459 Q 1.336 3.153 3.692 6.525
M, 1.02 0.381 2.68 1.72
M, 0.0527 0.156 0.263 0.576
M, 0.0536 1.06 0.319 1.93
0, 2.16 23.0 133 438
0, 0.104 7.13 0.533 26.5
0.1 84387 Q 1.336 3.153 3.692 6.525
M, 1.02 0.379 2.68 1.72
M, 0.0527 0.155 0.263 0.570
M, 0.0527 1.06 0.314 1.93
0, 2.47 27.6 15.2 523
Q 0.106 8.45 0.544 314

<

freely vibrating plates. This is an important conclusion as engineers unknowingly used the modal functions
for computation of the stress resultants based on the perception that the convergence of the frequencies

suffices in yielding accurate modal stress-resultant distributions.

2. It is necessary to use the Mindlin plate theory for determining stress resultants in freely vibrating
plates with free edges. The correct stress-resultant distributions that satisfy the natural boundary conditions
may be obtained when high degrees of polynomials are used in the Ritz method or when very fine meshes
are used in the finite element method. However, when the plate is relatively thin, it is difficult to obtain
converged stress resultants, especially twisting moments and shear forces because of the rapid changes of
the values of these stress resultants near the free edges. It is hoped that researchers will be prompted to
develop an efficient method for determining the stress resultants accurately, especially when the plate is

relatively thin.
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()

Fig. 3. (a) (i) Deflection, w for the 4th mode (method A), (ii) deflection, W for the 4th mode (method B — #/b = 0.01); (b) (i) Deflection,
w for the Sth mode (method A), (ii) deflection, w for the 5th mode (method B — //b = 0.01).
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(ii)

Fig. 3 (continued)
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(ii)

Fig. 4. (a) (i) Bending moment, M,, for the 4th mode (method A), (ii) bending moment, M,, for the 4th mode (method B — //b = 0.01),
(iii) bending moment, M,, for the 4th mode (method B — //b = 0.1); (b) (i) Bending moment, M,, for the 5th mode (method A), (ii)
bending moment, M,, for the 5th mode (method B — //b = 0.01), (iii) bending moment, M, for the 5th mode (method B — /b = 0.1).
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(i)

Fig. 4 (continued)
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Fig. 4 (continued)
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Fig. 5. (a) (i) Bending moment, M,, for the 4th mode (method A), (ii) bending moment, M,, for the 4th mode (method B — /b = 0.01),
(iii) bending moment, M,, for the 4th mode (method B — //b = 0.1); (b) (i) Bending moment, M,, for the 5th mode (method A), (ii)
bending moment, M,, for the 5th mode (method B — //b = 0.01), (iii) bending moment, M,, for the 5th mode (method B — h/b = 0.1).
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Fig. 5 (continued)
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(b)

(ii)

(iii)

Fig. 5 (continued)
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(a)

()

Fig. 6. (a) (i) Twisting moment, M,, for the 4th mode (method A), (ii) twisting moment, M,, for the 4th mode (method B — h/b = 0.01),
(iii) twisting moment, M,, for the 4th mode (method B — //b = 0.1); (b) (i) Twisting moment, M,, for the 5th mode (method A), (ii)
twisting moment, M,, for the 5th mode (method B — //b = 0.01), (iii) twisting moment, M,, for the 5th mode (method B — //b = 0.1).
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(iii)

(b)
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Fig. 6 (continued)
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(ii)

Fig. 6 (continued)
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(@)

()

Fig. 7. (a) (i) Shear force, Q, for the 4th mode (method A), (ii) shear force, O, for the 4th mode (method B — /b = 0.01), (iii) shear
force, Q, for the 4th mode (method B — /1/b = 0.1); (b) (i) Shear force, O, for the 5th mode (method A), (ii) shear force, Q, for the 5th

mode (method B — //b = 0.01), (iii) shear force, O, for the 5th mode (method B — /b = 0.1).
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(iii)

Fig. 7 (continued)
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(b)

(i)

(iii)
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Fig. 7 (continued)
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()

Fig. 8. (a) (i) Shear force, Q, for the 4th mode (method A), (ii) shear force, Qy for the 4th mode (method B — &/b = 0.01), (iii) shear
force, Qy for the 4th mode (method B — /b = 0.1); (b) (i) Shear force, Q for the 5th mode (method A), (ii) shear force, Q, for the 5th
mode (method B — A/b = 0.01), (iii) shear force, Q, for the 5th mode (method B — /b = 0.1).
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Fig. 8 (continued)
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Fig. 8 (continued)
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(a)

U

(i)

Fig. 9. (a) (i) Twisting moment, M,, for the 4th mode (method C — /b = 0.01), (ii) twisting moment, M,, for the 4th mode (method
C —h/b=0.1), (iii) shear force, O, for the 4th mode (method C —A/b = 0.01), (iv) shear force, Q, for the 4th mode (method
C — /b = 0.1); (b) (i) Twisting moment, M,, for the 5th mode (method C — //b = 0.01), (ii) twisting moment, M,, for the 5th mode

(method C — h/b = 0.1), (iii) shear force, Q, for the 5th mode (method C — /b = 0.01), (iv) shear force, O, for the 5th mode (method
C—h/b=0.1).
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(iii)

(iv)

Fig. 9 (continued)
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(b)

Fig. 9 (continued)
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(i)

(iv)

Fig. 9 (continued)
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3. The modified Ritz method with a penalty functional (i.e. method C) does not speed up the conver-
gence of the stress resultants, but it does ensure the satisfaction of the natural boundary conditions. For
thin plates, it creates some distortions to the stress-resultant distributions and may need some special
treatment to remove these undesirable effects.

4. Based on the numerical results of this paper, the Ritz method is more computationally efficient than
the finite element method in determining the stress-resultant distributions in freely vibrating rectangular
plates.
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